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TWO SOLUTIONS OF THE THREE-DIMENSIONAL PROBLEM OF LIMIT WAVES ON THE SURFACE 

OF A PONDERABLE FLUID* 

E.L. AMROMIN, M.A. BASIN and V.A. BUSHKOVSKII 

An example is given of the non-uniqueness of the solution of a stationary problem of 
waves in a vessel with a source or sink at the bottom. The range of the Froude numbers is 
determined, within which two solutions exist, with the limit waves of Stokes type appearing 
in one of them. A numerical method of solving non-linear wave problems is given. 

The non-uniqueness of solutions of certain non-linear problems of waves on the surface 
of a ponderable fluid of finite depth was predicted in /l/. An example of such a problem was 
found at a later stage; the formation of unified waves in a flow past a protuberence on the 
bottom of a channel was computed in /2/, and it was found that two solutions corresponded to 
a single value of the Froude number Fr constructed relative to the depth of the unperturbed 
flow. The dependence of the flow characteristics on another parameter, namely on the 
velocity u,,, at the crest of the wave, is, however, unique. 

The present paper gives an example of a non-unique solution for the limiting case of 
non-linearity of the wave (v,=O) over a certain range of the values of Fr. 

1. Axisymmetric problems are the most suitable models of the problems of the theory of 
flows with free boundaries, since they match the small batches 

2 of computations, approximately equal to those in the plane 
r: G 

I': 
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problem, with the faster (spatial) decay of the perturbations. 
In the present paper we consider the representative problem of 

L the flow ina vessel containing an ideal ponderable incompressible 
fluid flowing out through an opening situated on the axis of 
symmetry. 

I.7 The flow scheme is shown in Fig.1, which shows the half- 

0 'm r plane 2, r of the meridional cross-section of the vessel. The 
force of gravity is parallel to the z axis, and the fluid occupies 
the vessel with a bottom and a side surface whose cross-sections 

Fig.1 are ODeand DC respectively. The fluid is bounded above by a 
free surface whose form is not known in advance. The concentrated 
sink of capacity Q* is situated at the point 0 which is the 

origin of coordinates, and is compensated by a ring of sources lying on DC, so that the 
resulting flow is steady. 

The above hyrodynamic problem reduces to a non-linear boundary-value problem for a 
harmonic function, i.e. for the velocity potential CD, typical for wave theory: 

A@ = 0, (C@,N)I, = V (1.1) 
(CQ, V@) + 2gz I& = const (1.2) 

Here g is the acceleration due to gravity, N is the normal to the boundary S of the 
flow, and the velocity of fluid flow V through this boundary is non-zero only at the point 
0 and on DC. 

2. The scheme shown in Fig.1 corresponds to only one of the solutions of problem (l.l)- 
(1.2). Other solutions, in addition to such a solution with a "funnel" and a corner point at 
the tip of the wave are possible. In the second scheme we have the corresponding concept of 
a free surface at a height H on the axis of symmetry and a decay ~-4 IV@1 as r increases. 
In the third scheme this concept is combined with a non-decrease in velocity as r-+m, but 
unlike the plane problem /3/, in the axisymmetric problem for this scheme z+O as r-00. 

-When considering the form of the free surface with a break, we must know the angle at 
the tip of the wave. Since from the Bernoulli integral it follows that 

u = I/2g(H - 2) (2.1) 

we have, in the neighbourhood of the tip at Iz- H/4H/2,r-HH, 
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This implies that we can carry out a qualitative analysis of the flow near the tip, using 
the methods of plane theory, namely a conformal mapping. When mapping the angle a with apex 

at the point {Z-H, r= rm) onto the half-plane 5, we have /4/ zlx- ca, and for the complex 

velocity dW/dz, = (dW/dC) (dz,ldg)-l - (H - z)~‘*~. From (2.1) on the other hand, we have dWldz, - (H - 

zp: , a = 21~13. 
In the problem in question the fluid particles near the free surface move relative to 

various phases of the wave which has a fixed position in space, just as in the case of the 
waves generated by a ship behind a stationary model of a ship in a water tank. The flow in 
this case depends, generally speaking, on two parameters, namely the Froude number Fr= Q*HJIa 

mPJ-,;i, and the ratio !&= r,lH (p is the density of the fluid and 7, is the radius of the 
, but in all computations carried out the quantity f/E,= 0.06, was fixed, i.e. the 

problem solved was, in fact, a one-parameter problem. 

3. Below we have used the suggestion made in /5/ that the numerical methods used success- 
fully in /5, 6/ in the non-linear theory of cavitational flows should be modified for use with 
wave problems. Here, the non-linearity of the problem is also governed by the presence of an 
a priori unknown free boundary of the fluid. Problem (1.1) has a unique solution for any 
form of AC, but in order to satisfy (1.2) also, we must select the corresponding form of AC. 

In order to do this, we shall use the process of successive approximations analogous to 
Newton's method for systems of transcendental equations. Having solved problem (1.1) for 
some initial approximation to the free boundary AC, we calculate the discrepancy in (1.2). 
Having chosen the independent variables for describing the form of the free boundary, we seek 
the variable perturbations, preferably small, which make the discrepancy vanish. The perturbed 
values are then used to establish a new boundary, problem (1.1) is again solved for this 
boundary, and the process is continued until the discrepancy (1.2) becomes vanishingly small 
everywhere on AC. 

The use of the process of successive approximations in solving problem (1.11, does not 
present any fundamental difficulties. Using the increased capacity of modern computers, we 
can determine the derivatives of Q with great accuracy. In order to do it, it is best to 
reduce their computation to two operations, namely, to determining the density Q of the 
potential of the sample layer QD,= Q-Q*(~zR*)-~ from the integral Fredholm equation of 
second kind /7/ which has the following from outside the corner points of S: 

(3.1) 

and the angle dependent coefficient accompanying the first term of (3.1) at these points /8/, 
and to calculating the velocity components using Coulomb's formula 

VQ==V KT * tQ* ’ )pdS). (3.2) 

Here R* is the distance from the central point on S to the origin of coordinates, and 
R is the distance from the control point to an arbitrary point on S. 

When correcting the form of S, we must relate its deformations h directed along N to 
the perturbations in the components of CQ defining the discrepancy in (1.2). Let S, be the 
initial, and Sa the corrected form of AC. The velocity components are perturbed as a result 
of displacing the streamlines away from IS, by a distance h, and rotating the normal to them 
(i.e. changing the unit vector N by a small quantity n), as well as a result of the pertur- 
bation in the density Q of the potential of the simple layer QD, by a small amount q (the 
sources with abundances of Q and q are distributed over the known surface S,). We can write 
the expansions for the components of CQ on Sa. retaining only terms of the order of smallness 
not higher than the first, and denoting by T the unit vector of the tangent to S, 

(VQ, N) = g IQ.+ d Is, + h $ti (Ql is, 
aQ aw 

(VQ, T) = x W+in) Is, f h z (Q) Is, 

The boundary conditions for Q(Q), n- -dhJaT from (1.1) hold on AC. After substituting 
(3.31 into the boundary conditions (1.1) and (1.2) on Sa and taking into account the 
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perturbations in the Archimedean force, we obtain 

atpi&V = -8 (hlJ)laT (3.4) 

~tplaT+~,~~hhi~2(H--)+xUh~J2g(H--)-ff (3.5) 

Here 'p = CD (q], x is the curvature of AC, Nz is the component of N (the transfer from 
the Cartesian coordinates attached to the normal to the curvilinear coordinates (3.4), (3.5), 
can be made using well-known rules /4/j. Relations (3.41, (3.51 yield, after eliminating q, 
a linear relation between the discrepancy (1.2) and h, and the linear operators on S, used 
in (3.4) and (3.5) have been found already when determining Q and U with help of the formulas 
(3.1) and (3.2). When correcting AC, we first determine q from (3.51, and then find h 
from the ordinary differential Eq.(3.4). 

In the case of the scheme with a break, the free surface is divided into two parts, the 
"funnel" AB and the "mirror" BC. When determining q from (3.51, a method described in /5, 
6/ is used on AB: the Cauchy integral of the density n/9, determined on AB is separated from 
acp/aT and inverted /i'/ in the class of functions (3.5) bounded at the ends of the arc. After 
this it is transformed into the integral Fredholm equation of the second kind in q, suitable 
for numerial solution. The necessary condition for a bounded solution 1'71 to exist now yields 
the corresponding value of the parameter Fr, and for such a solution we have 4 (A) = CJ (B) = 0. 

We must also remember that from (2.11 it follows that h(B)=0 near the point B. There- 
fore, we must integrate Eq.(3.4) on AB beginning from the point B, and the asymptotic form 
(2.1) is used for U near this point and not the value obtained from (3.21. In the general 
case (3.4) yields h(A)#O and in order to avoid the discontinuity S the arc AC is displaced, 
before carrying out the subsequent approximation, by a distance h(A) in a direction parallel 
to the z axis, i.e. we fix in the successive approximation the depth of the funnel, and 
gradually refine the value of its width and Fr. 

The correction of the "mirror" is carried out in each approximation after correcting AB. 

In this interval we seek q from (3.5), using the inversion of the Cauchy integral mentioned 
above and unbounded /?/ for large r, and carry out the integration (3.4) using (2.11 and the 
condition h(B)=O. The unboundedness of q at the point C(r*iI) is not important in this 
problem, since h(c)-_. In the case of the other scheme the "mirror" represents the whole 
boundary. 

In order to ensure the convergence of the computations we adopt here, as in /6/, two 
compatible modifications of Eqs.(3.41 and (3.51; the term proportional to x in (3.51 is 
omitted, and the factor up< f 

Fig.2 

is introduced into the left-hand side of (3.41. The point 
is that it is difficult to determine ?C numerically with an 
error as small as the other quantities used in (3.5). On the 
other hand, eliminating the term xuh from (3.5) leads to an 
increase in the absolute values of q and this must then be 
compensated by means of the coefficient of relaxation a,>O. 

4. Fig.2 shows the results of the computations. Curves 
1 and 2 corresponding to Fr=4.07 and Fr = 5.39 are the 
meridional cross-sections of the free surface with the narrow- 
est and the widest funnel. There are no such solutions out- 
side the range 4.07 f Fr ~< 5.39, while within it all solutions 
are similar to those given here. Curves 3 and 4 depict the 
forms of S without the funnels for Fr=.3.71 and Fra4.23. Such 
solutions exist only for Fr<4,23. On the "mirror" we have 
waves whose amplitudes decrease with distance from the axis 
of symmetry in all solutions,but the crests of the waves do not 
rise to the unperturned level z= H. The insert in the bottom 
the relation between the coordinate r,,., of the crest of the 
line corresponding to the solution with a funnel and the dot- 

right-hand part of Fig.2, shows 
largest wave and Fr, the dashed 
dash to the solution without it. The domain of existence of two solutions, albeit small, is 
much larger than the error incurred in the course of the numerical determination of Fr. 

When discussing the possibilities of the physical realization of the solutions obtained, 
we should note, firstly, that the form of the free surface, as implied by relations (1.21, 
(3.1) and (3.21, does not depend on the sign of Q* (i.e. on the direction of the velocity at 
the point 0). This means that the solutions of this problem are the same for a concentrated 
source and concentrated sink of equal strength, and secondly, since a concentrated singularity 
can describe the flow through a real opening of radius Ifl, only when RO-H/lo, it follows that 
for Fr-4 and a velocity of flow V, the depths'H will be very small. It would obviously 
be more reasonable to seek an experimental confirmation not for the solutions of a one-par- 
ameter problem, but for an analogous problem with a distributed source and two parameters, 
namely Fr and R,IH, for which there are no restrictions in the value of the ratio X,IH and 
such a rigid relation between V, and H. 



REF~ENCES 

I. M#ISEYEV N.N., On the non-uniqueness of the possible forms of steady flows of a heavy 
fluid for Froude numbers close to unity. PMN, 21, 6, 1951. 

2. GUZEVSKII L.G., The flow of a heavy fluid of finite depth past obstacles, in: Dynamics of 
a Continuous Medium.with Interfaces, Izd Chuvash. Univ., Cheboksary, 1982. 

3. KOTLYAR L.'M, and TROYEPGL'SKAYA O.V*, Flow of a jet of heavy fluid through an opening in a 
horizontal wall, in the presence of a free surface, Proceedings of the Seminar on 
Boundary Value Problems, I&. Kazan. Univ. 22, 1985. 

4, KGCHIN N.E., KIEEL' I.A- and ROZE N.V., Theoretical Hydroaechanics, 1, Fizmatgiz, Moscow, 
1963. 

5. IVANOV A.N., Hydrddynamics of Developea Cavitational Flows. Sudostroyeniye. Leningrad, 
1980. 

6. AMROMIN E.L., BUSHKOVSKII V.A. and DIANOV D-I., Developed cavitation behind a disc in a 
vertical pipe. IzV, Akad. Nauk SSSR, MZhG, 5, 1983. 

7. ZABOREIKQ P.P., KOSHELEV A.I., KRASNGSEL'SKII M.A., et al., Integral Equations. Nauka, 
Moscow, 1968. 

8. T~R~NT~y~ A.G. and AFANAS'YEV K.E., Numerical Methods in Hydromechanics. Izd. Chuvash, 
Univ. Cheboksary, 1987, 

Translated by L.K. 

PMM U,S.S.R.,Vol.54,Na,l,~p. 137-142,lggG DO21-8928~9~ $l~.OOiO.OO 
Printed in Great Britain 81991 Pergaaon Press plc 

LOWER &STr~AT~S OF THE C~A~ACT~~~ST~C F~~~~~NC~~S OF THE ~SC~~~AT~~~S OF A 
LfQUfD WITH A FREE SURFACE IN CHANNELS OF ARBITRARY CROSS-SECTION" 

V.I. TARRKANOY 

Lower estimates are obtained for the leading characeristlc frequency af 
oscillations of a liquid in a channel of arbitrary cross-section vith 
several sections of the free surface of the liquid. The case of 
oscillations in the plane of the cross-section of the channel is 
considered. The domain occupied by the cross-section can be multiply 
connected an8 bounded by a piecewise smooth curve. The dexivation of the 
estimates is not connected with the need to find standard domins and is 
not based on variational methods fl-3f. 

a. The boundary eigenvalue problem 

is considered for a multiply connected domain DIcR"(~, I) bounded by a piece&se-smooth curve 
P consisting of a number of closed curves. F has m segments r, for j = 1,2-..m, where 
boundary conditions corresponding to the conditions on the free surface of the liquid are 
given. rj : y = hj, al<xc:bj, j=t, z...m, r,=r,ur,~ ...fnI. 

It is assumed that the segments of the free surface cam be placed at different levels iJ = & 
(for example, to maintain different pressures of gases over different sections of the surface), 
In the general case, the segments rj may belong to different closed curves of the contour P, 
Apart from a dimensional factor, w is identical with the characteristic frequency of oscil- 
lations of the liquid. Thus, in what follows it is called simply the frequency af character- 
istic oscillations of the liguid. 


